

Robust Assessment of Real-World Adversarial Examples

Brett Jefferson Carlos Ortiz Marrero

> Pacific Northwest National Laboratory

> Richland, WA 99354

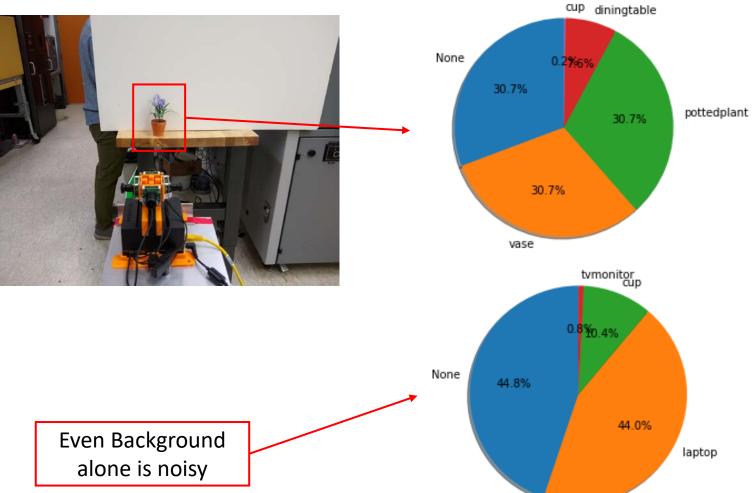
Adversarial Perturbations Can Be Brittle!

Pacific Northwest

Real-World Assessments Have Different Challenges

Real-World Challenges:

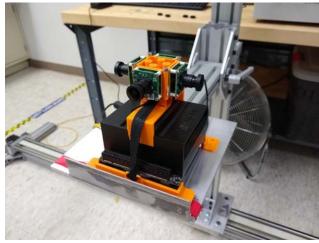
- Camera focusing
- Auto exposure
- Small perturbations
- How to physically manifest adversaries
 - Fabric/ Materials
 - DPI
 - Color Quality
 - Scale Considerations



We Sought

- 1. A measure that communicated in a single value of how well an adversary performed while accounting for
 - a) Noisy frame-by-frame variation
 - b) How the model performs in the absence of an adversary
- 2. A testing procedure that allowed for controlled, yet realistic variability
- 3. To understand (and quantify) how various objective functions and training sets impact adversarial success

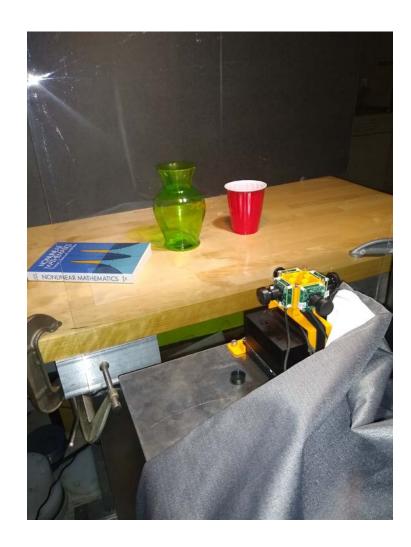
Testbed



Desired a controlled environment to quantify frame-by-frame variation over many fixed (but slightly perturbed) scenes

Primary evaluation platform/ testbed:

- Xavier Jetson
- e-CAM130_CUXVR camera
- Two Independent light sources
- Custom mounting system for controlled viewing

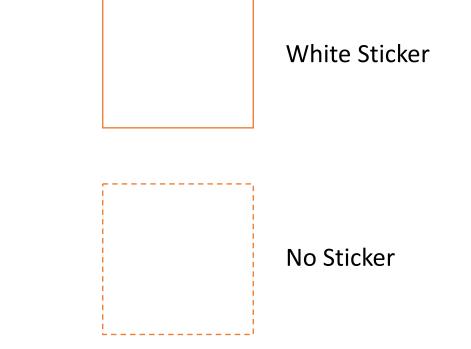


Adversarial Patches

Database: ImageNet Optimization: Class Score x Objectness Score Name: **"ImageNet(CxO)"**

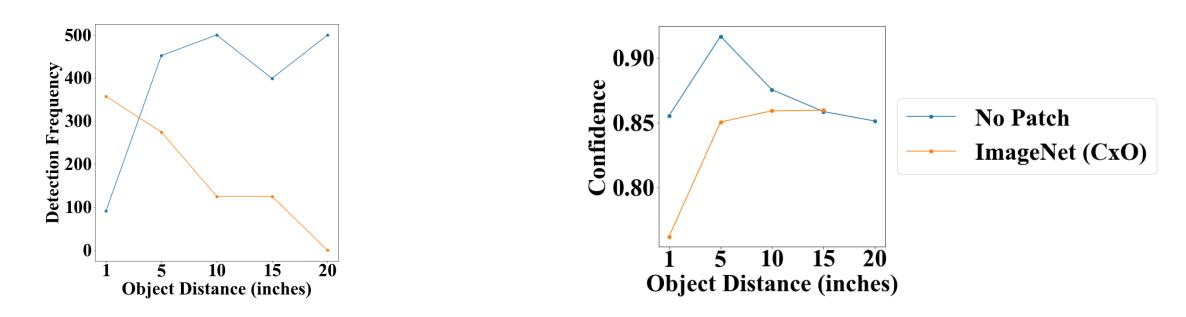
Database: ImageNet Optimization: Objectness Score Name: **"ImageNet(O)"**

Database: ImageNet and OpenImages Optimization: Class Score x Objectness Score Name: **"Composite(CxO)"**



Thys S, Van Ranst W, Goedemé T. "Fooling automated surveillance cameras: adversarial patches to attack person detection". In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019

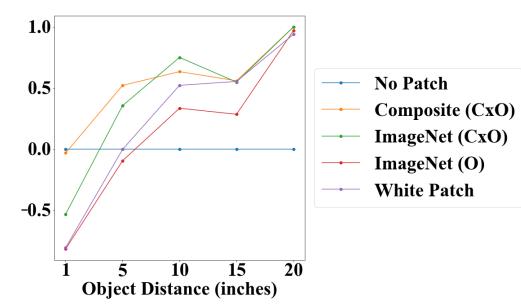
Lesson 1: Frequencies and confidences are not enough to understand adversarial (or baseline model) performance.



Lesson 2: Baseline performance matters!

('Vase' is a class in YOLOv2)

Lesson 3: A global score that accounts for baseline $S(P, E) = \frac{1}{|E|} \sum_{e \in E} \frac{(f_{\{\emptyset, e\}} - f_{\{P, e\}})}{\# Frames}$



Normalized frequency differences per distance condition

Patch	Score
No Patch	0
♦Composite (CxO)	0.536
ImageNet (CxO)	0.424
White Patch	0.241
ImageNet (O)	0.135

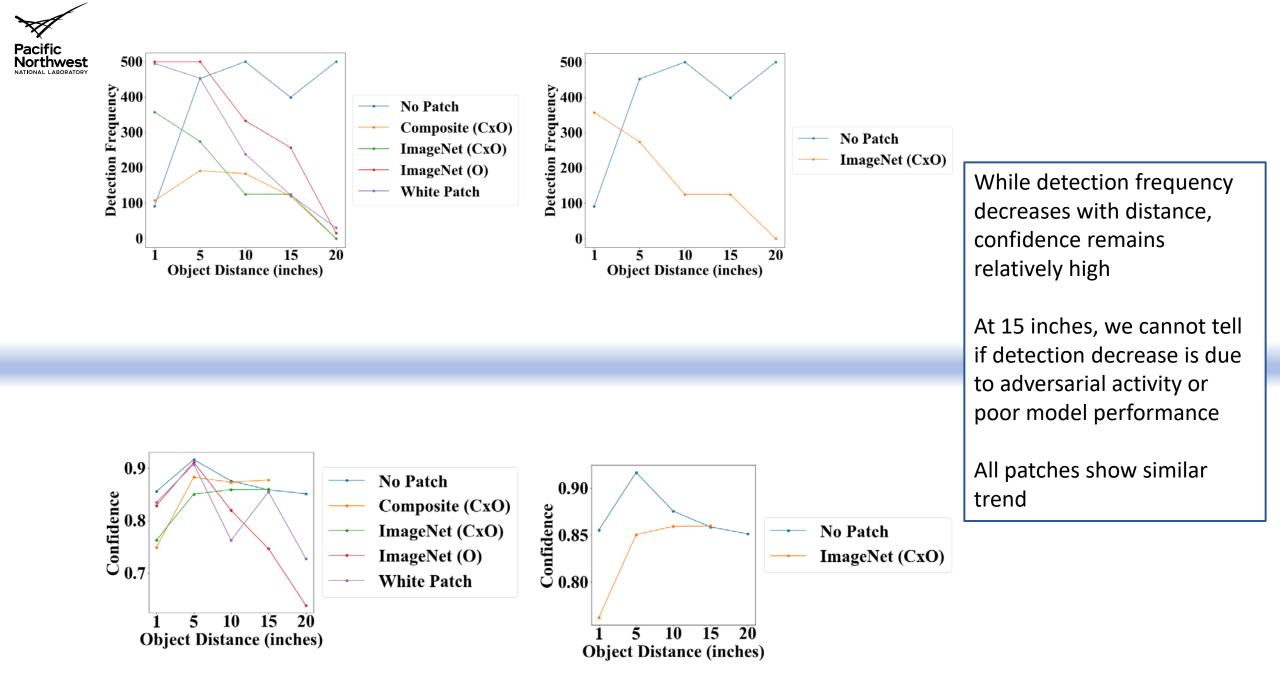
Best Performing Patch

In Summary

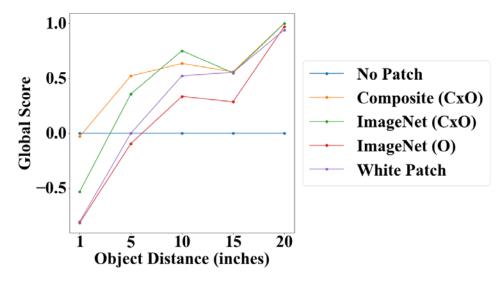
- 1. We provide an example of testing robustness of adversarial examples that
 - a) can generalize to other physically developed examples
 - b) accounts for natural changes and baseline performance
- 2. We provide a measure of robustness that is practical and evaluates real-world adversarial examples

Thank You

Appendix



Global Score



Patch	Score
No Patch	0
◆ Composite (CxO)	0.536
ImageNet (CxO)	0.424
White Patch	0.241
ImageNet (O)	0.135

$$S(P, E) = \frac{1}{|E|} \sum_{e \in E} \frac{(f_{\{\emptyset, e\}} - f_{\{P, e\}})}{\# Frames}$$

- E := Environments/ Small perturbations
- Detection frequency difference between a no-adversary condition and adversary condition, normalized over perturbations of the scene.
- Provides an intuitive measure of adversarial performance over controlled environmental factors.
- Adversarial patch trained on two image datasets and minimizing the product of 'class score' and 'objectness score' out performs patches trained in less diverse way.

Class-To-Class

Understanding class-to-class misclassifications is certainly valuable for quantifying adversarial performance in a more complete way. However, the current study provides a coarse first approach to fast scoring with small scene changes

book -	0	0	5	0	0
bottle -	8.3	7.1	2.2	7.7	7.4
bowl -	0	0	0	0	6.2
car -	0	0	2.9	0	0
cat -	3.5	0	0	0	0
cell phone -	6.1	8	3.4	0	0
chair -	0	3.4	0	0	0
cup -	0.69	2.8	7.9	0	7.5
diningtable -	7.3	7.6	7.5	8.1	7.5
laptop -	0	0	2.2	0	0
parking meter -	0	3.1	0	0	0
refrigerator -	0	0	0	0	0.69
remote -	8.9	8.9	0	0	0
suitcase -	0	0	4.2	0	0
truck -	0	0	5.4	0	0
tvmonitor -	0	0	3.8	0	0
vase -	7.8	8.2	8.8	9	8.6
wine glass -	3.2	2.4	0	0	1.8
	Composite(CxO) -	Imagenet(CxO) -	- (O) - Patch	NoPatch -	White -

- 2

Class