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Games on Graphs and Random

Strategies



Non-Local (Two-prover One-round) Games

Let’s play a game:

Suppose two non-communicating players, Alice and Bob, each receives an

input from some finite set I and each must produce an output belonging

to some finite set O.

The “rules” of the game are given by a function

λ : I × I × O × O → {0, 1}

where λ(v ,w , x , y) = 0 means that if Alice and Bob receive inputs v ,w ,

respectively, then producing respective outputs x , y is “disallowed”.
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Non-Local (Two-prover One-round) Games

Alice Bob

Alice Bob

Referee

Strategy

v w

↓

Alice λ(v ,w , x , y) = 0, 1? Bob

Referee

x yv,w x,y
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Winning Strategies

A strategy for such a game is a conditional probability density p where

p(x , y |v ,w) represents the probability that if Alice receives input v and

Bob receives input w , then they produce outputs x and y , respectively.

Such a strategy is called winning or perfect provided:

λ(v ,w , x , y) = 0 =⇒ p(x , y |v ,w) = 0.

We call p synchronous if p(x , y |v , v) = 0, ∀x 6= y .
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The Graph Colouring Game

Let G = (V ,E ) be a graph with vertex set V and edges E ⊂ V × V , the

inputs are I = V and the outputs O are a set of colors. The rules are

that,

• λ(v , v , x , y) = 0, ∀v ∈ V , ∀x 6= y

• λ(v ,w , x , x) = 0, ∀(v ,w) ∈ E , ∀x ∈ O

Example

• I = {1, 2, 3, 4, 5, 6}
• O = {Blue,Green,Red}
• Strategy: Vertex Coloring

• Rules? X
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The Graph Homomorphism Game

Given graphs G = (V (G ),E (G )) and H = (V (H),E (H)), a graph

homomorphism is a mapping f : V (G )→ V (H) such that if

(v ,w) ∈ E (G ) =⇒ (f (v), f (w)) ∈ E (H)

When a graph homomorphism from G to H exists we write G → H. For

the game, the inputs are V (G ) and the outputs are V (H) and the rules

are that,

• λ(v , v , x , y) = 0, ∀v ∈ V (G ), ∀x 6= y

• λ(v ,w , x , y) = 0, ∀(v ,w) ∈ E (G ), ∀(x , y) /∈ E (H)

Coloring is a special case of homomorphism where H = Kc , c = |O| is

the number of colors.
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Classical Strategies

A density p is called a local or classical correlation if there is a

probability space (Ω, µ) and random variables,

fv , gw : Ω→ O for each v ,w ∈ I

such that,

p(x , y |v ,w) = µ({ω | fv (ω) = x , gw (ω) = y})
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Quantum Strategy

A density p is called a quantum correlation if it arises as follows:

Suppose Alice and Bob have finite dimensional Hilbert spaces HA, HB

and for each input v ∈ I Alice has projective measurements (PVMs)

{Fv ,x}x∈O on HA, i.e., an |O|-outcome quantum experiment, and for

each input w ∈ I Bob has projective measurements {Gw ,y}y∈O on HB

and they share a state ψ ∈ HA ⊗HB , then

p(x , y |v ,w) = 〈Fv ,x ⊗ Gw ,yψ,ψ〉

This is the probability of getting outcomes x , y given that they

conducted experiments v ,w .
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Quantum Commuting Strategy

A density p is called a quantum commuting correlation if there is a

single Hilbert space H, such that for each v ∈ I Alice has projective

measurements {Fv ,x}x∈O on H and for each w ∈ I Bob has projective

measurements {Gw ,y}y∈O on H satisfying,

Fv ,xGw ,y = Gw ,yFv ,x , ∀v ,w , x , y

and

p(x , y |v ,w) = 〈Fv ,xGw ,yψ,ψ〉

where ψ ∈ H is a shared state.
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Sets of Correlations

When |I | = n and |O| = m, we let:

• Cloc(n,m) denote the set of all densities that are local correlations

• Cq(n,m) denote the set of all densities that are quantum correlations

• Cqc(n,m) denote the set of all densities that are quantum commuting

correlations

Remark

Note that we can view each density p as a n2m2-tuple where each values

is given by p(x , y |v ,w).
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Conjectures of Connes and Tsirelson



Connes and Tsirelson

Set Cqa(n,m) := Cq(n,m). Here is what is known and why these objects

are interesting:

• Cloc(n,m) ⊆ Cq(n,m) ⊆ Cqa(n,m) ⊆ Cqc(n,m)

• Cloc(n,m) and Cqc(n,m) are closed

• “Bounded Entanglement Conjecture”: Is Cq(n,m) = Cqa(n,m) ∀n,m ?

• Tsirelson conjecture (1993, 2006): Is Cq(n,m) = Cqc(n,m) ∀n,m ?

• Ozawa (2012): Connes’ embedding conjecture (1976) is true iff

Cqa(n,m) = Cqc(n,m), ∀n,m
• Dykema-Paulsen (2015): Connes’ embedding conjecture is true iff

C s
qa(n,m) = C s

qc(n,m), ∀n,m

Remark

Notice that Tsirelson conjecture implies Connes’ embedding conjecture.
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Quantum Chromatic Numbers



Motivation

Question

PSSTW (2014): Can we distinguish these sets of correlations by studying

existence of winning strategies for highly combinatorial games? Or con-

versely provide some evidence for the truth of these conjectures by showing

no difference in existence?

17



Quantum Chromatic Numbers

Let G be a graph on n vertices. Recall that the chromatic number of a

graph,

χ(G ) = min{m : G → Km}

Definition

For t ∈ {loc, q, qa, qc}, we define the quantum chromatic numbers by

χt(G ) = min{m : ∃ p(x , y |v ,w) ∈ Ct(n,m),

p(x , y |v , v) = 0 ∀x 6= y ,

(v ,w) ∈ E (G ) =⇒ p(x , x |v ,w) = 0}.
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Quantum Chromatic Numbers: Results

• χloc(G ) ≥ χq(G ) ≥ χqa(G ) ≥ χqc(G )

• Paulsen-Todorov (2013): χloc(G ) = χ(G )

• For a Hadamard graph ΩN , (1.98)N ≤ χ(ΩN) ≤ 2N and

χq(ΩN) = χqa(ΩN) = χqc(ΩN) = N

• For χt(G ) ≤ m:

χloc χq χqa χqc

Complexity NP-Complete NP-Hard ? ?

Algorithm SDP ? ? SDP

• RM (2012): Analog of the fractional chromatic number for χq

• PSSTW (2014): Analog of the fractional chromatic number for χqc
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Quantum Graph Homomorphisms



Quantum Graph Homomorphisms

For t ∈ {loc, q, qa, qc}, we write G
t→ H provided that there exist a

p(x , y |v ,w) ∈ Ct(n,m) such that,

• p(x , y |v , v) = 0, ∀v ∈ V (G ), ∀x 6= y

• p(x , y |v ,w) = 0, ∀(v ,w) ∈ E (G ), ∀(x , y) /∈ E (H)

i.e., if there exists a winning t-strategy for the graph homomorphism

game. We call these quantum graph homomorphisms.
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Quantum Graph Homomorphisms: Results

Theorem (O-Paulsen)

Let G and H be graphs.

• G → H ⇐⇒ G
loc→ H

• G −→ H =⇒ G
q−→ H =⇒ G

qa−→ H =⇒ G
qc−→ H

• G
t→ H and H

t→ K implies G
t→ K

• χt(G ) = min{m : G
t→ Km}
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C*-algebras and Graph Homomor-

phisms



C*-Homomorphisms

Given graphs G and H, we write G
C∗

→ H if we can find projections

{Ev ,x : v ∈ V (G ), x ∈ V (H)} on some Hilbert space H satisfying:

• Ev ,xEv ,y = 0, ∀x 6= y

•
∑

x Ev ,x = I , ∀v
• If (v ,w) ∈ E (G ) and (x , y) /∈ E (H) =⇒ Ev ,xEw ,y = 0

If G
C∗

→ H exists, we let A(G ,H) denote the “universal” unital C*-algebra

generated by {Ev ,x : v ∈ V (G ), x ∈ V (H)}.
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C*-Homomorphisms: Results

Theorem (O-Paulsen)

G −→ H =⇒ G
q−→ H =⇒ G

qa−→ H =⇒ G
qc−→ H =⇒ G

C∗

−→ H

Theorem (O-Paulsen)

Let G and H be graphs.

• G → H ⇐⇒ A(G ,H) has a 1-dimensional representation

• G
q→ H ⇐⇒ A(G ,H) has a finite dimensional representation

• G
qc→ H ⇐⇒ A(G ,H) has a trace

Don’t have a characterization of G
qa→ H.
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C*-Homomorphisms: Results

Theorem (O-Paulsen)

Assume Tsirelson’s conjecture is true. Then A(G ,H) has a trace iff

A(G ,H) has a finite dimensional representation.

Theorem (O-Paulsen)

Let G be a graph.

• χ(G ) ≤ m ⇐⇒ A(G ,Km) has a 1-dimensional representation

• χq(G ) ≤ m ⇐⇒ A(G ,Km) has a finite dimensional representation

• χqc(G ) ≤ m ⇐⇒ A(G ,Km) has a trace
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Connections with Complexity Theory

Theorem (O-Paulsen)

Let G be a graph on n vertices and fix m.

• There exist algorithms for deciding if A(G ,Km) has a 1-dimensional

representation, but the problem of deciding if A(G ,Km) has a

1-dimensional representation is NP-complete.

• The problem of deciding if A(G ,Km) has a finite dimensional

representation is NP-hard and currently there is no known algorithm.

• There exists an SDP that decides if A(G ,Km) has a trace.
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C*-algebras and Chromatic Numbers



C*-Chromatic Number

Now that we have a “new” notion of a graph homomorphism we can

define,

χc∗(G ) = min{m : G
C∗

→ Km},

Theorem

• χqc(G ) ≥ χc∗(G )

• ϑ(G ) ≤ χc∗(G )

• χc∗(G�H) = max{χc∗(G ), χc∗(H)}
• Defined analog of the fractional chromatic number for χc∗(G ):

ξc∗(G ) ≤ χc∗(G )
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Quantum Cores



Core of a Graphs

Definition

A retract of a graph G is a subgraph H of G such that there exists a

homomorphism φ : G → H, called a retraction, with φ(x) = x for any

x ∈ V (H). A core is a graph which does not retract to a proper subgraph.
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Existence of Cores

Theorem

Let φ be an endomorphism of a graph G . Then there is an n such that

R = φn(G ) is a retract of G (and φn a retraction). Hence, every graph

has a core.
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“Quantum” Core: Motivation

We will now try to address a question asked by Roberson in his thesis:

how should we define a “quantum” core of a graph? We will use the

above theorem as a guiding principle to define what we call “quantum

cores”.

33



Ingredients for a “Quantum” Core

• You need to be able to define some kind of “generalized retraction”.

• You need to be able to “iterate” to get a “retract”.

• You need to be able to talk about “minimality” in order to defined a

“core”.
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Quantum Homomorphism as CP maps

Definition

Let p(x , y |v ,w) ∈ Qx(n,m) be a winning x-strategy, let Ev ,w ∈ Mn and

Ex,y ∈ Mm denote the canonical matrix unit bases.

Define the map φp : Mn → Mm by

φp(Ev ,w ) =
∑
x,y

p(x , y |v ,w)Ex,y

We say that p implements the map φp.
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The Operator System of Graph

We define the operator system of the graph G to be

SG := Span{Eij : (i , j) ∈ E (G ) or i = j} ⊂ Mn(C)

Theorem

G1 is isomorphic to G2 ⇐⇒ SG1 is unitally, completely order isomorphic

to SG2
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Properties of φp

Theorem

• φp is CP.

• φp(SG ) ⊆ SH .

• φp is trace-preserving on SG .
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Composition of φp’s

Theorem

Let x ∈ {l , q, qa, qc , vect}, let p(x , y |v ,w) ∈ Qx(n,m) and let q(a, b|x , y) ∈
Qx(m, l). Then

r(a, b|v ,w) :=
∑
x,y

q(a, b|x , y)p(x , y |v ,w) ∈ Qx(n, l).

Moreover, if p and q are winning x-strategies, then r is a winning x-strategy.

Theorem

If φp : Mn → Mm, φq : Mm → Ml and φr : Mn → Ml are the corresponding

linear maps, then φr = φq ◦ φp.
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Relation to the Lovász Theta Function

Theorem

Let G and H be graphs on n and m vertices, respectively. Let p(x , y |v ,w) ∈
Qx(n,m) be a winning x-strategy for a graph homomorphism. Then

‖φp‖cb ≤ ϑ(G ).

Recall that,

||φ||cb := sup
n∈N
{||φ⊗ In||}.
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Banach Limits

A Banach generalized limit, is a positive linear functional f on `∞(N),

such that:

• If (ak) ∈ `∞(N) and limk ak exists,then f ((ak)) = limk ak .

• If bk = ak+1, then f ((bk)) = f ((ak)).

• If (ak) ∈ `∞(N) and ak ≥ 0, then f ((ak)) ≥ 0.

The existence and construction of these is presented in Conway’s A

Course in Functional Analysis, along with many of their other properties.

Often a Banach generalized limit functional is written as glim.
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Generalized Retraction: Construction

Let G be a graph on n vertices, let x ∈ {loc, qa, qc, vect}, and let

p(x , y |v ,w) ∈ Cx(n, n) be a winning x-strategy. Now:

1. Set p1(x , y |v ,w) := p(x , y |v ,w)

2. Set pk+1(x , y |v ,w) :=
∑

a,b p(x , y |a, b)pk(a, b|v ,w)

3. Define r(x , y |v ,w) := glim
(
pk(x , y |v ,w)

)
,

Theorem

Following properties hold for r :

• r(x , y |v ,w) ∈ Cx(n, n) is a winning x-strategy.

• r(x , y |v ,w) =
∑

a,b r(x , y |a, b)r(a, b|v ,w).
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Generalized Retraction: Properties

Theorem

Let p(x , y |v ,w) ∈ Cx(n, n) be a winning x-strategy and let ψp : Mn → Mn

be the map implemented by the above r (i.e. ψp := φr ) Then:

• ψp is CP and TP on SG .

• ψp ◦ φp = φp ◦ ψp = ψp

• ψp ◦ ψp = ψp
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Minimality

Theorem

Let G be a graph on n vertices and let x ∈ {loc, qa, qc, vect}. Then there

exists r(x , y |v ,w) ∈ C s
x (n, n) implementing a map φr : Mn → Mn that is

idempotent and minimal in the partial order on idempotent maps of the

form φp implemented by a quantum x-homomorphism of G .
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Quantum Cores

Definition

Let G be a graph on n vertices and let x ∈ {loc, qa, qc, vect}. Then a

quantum x-core for G is any p(x , y |v ,w) ∈ Cx(n, n) that implements a

quantum x-homomorphism such that φp is idempotent and minimal among

all φp implemented by a quantum x-homomorphism of G .
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Open Problems

• Give a characterization for G
qa→ H.

• Complexity level of determining if A(G ,Km) exists, i.e. χc∗(G ) ≤ m.

• Prove theorems about our “quantum” core.

• If we could show that whenever families of projections on an infinite

dimensional Hilbert space exist that satisfy the relations for A(G ,Km)

to exist, then these relations could be met by projections on a finite

dimensional space, then

χq(G ) = χqa(G ) = χqc(G ) = χc∗(G ).
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