Lovász Theta Type Norms Graphs, SDPs, and Operator Systems

Carlos Ortiz University of Houston

Based on joint work with Vern Paulsen

Joint Mathematics Meetings

January 10, 2015

Carlos Ortiz (University of Houston)

Graphs and Operator Systems

January 10, 2015 1 / 24

Introduction

Operator System

Definition

We define an operator system S to be any unital *-closed subspace of B(H). Let S^+ denote the cone of positive elements in S. Unless otherwise stated, all operator system are assumed to be finite dimensional.

Notation

Inner product in M_n

Recall that M_n is a Hilbert space with respect to the inner product $\langle a, b \rangle = tr(ab^*)$, $a, b \in M_n$. Thus, given any subspace $S \subseteq M_n$, one may form the orthogonal complement S^{\perp} of S.

Graphs

Example

The Operator System of a Graph

Definition

We define the operator system of the graph G to be the operator system $S_G := \{(I + A_G) \circ X : X \in M_n\}$, where A_G is the adjacency matrix of G.

Recall that with the above inner product, the orthogonal projection $P_G: M_n \to S_G$ is given $P_G(X) = (I + A_G) \circ X$. It is not too hard to see that,

$$S_G^{\perp} = \{A_{\overline{G}} \circ X : X \in M_n\}$$

The Operator System of a Graph

Operator systems have always played a fundamental role in quantum information theory e.g. the model for a quantum channel is a completely positive trace preserving map. In 2010, Duan, Severini, and Winter proposed,

Operator System Theory = "Noncommutative Graph Theory".

In addition,

Theorem

G is isomorphic to $H \iff S_G$ is completely order isomorphic to S_H

- If operator systems are like "generalized graphs", then can we apply operator system theory to classical graph theory and vice versa?
- Does the extra structure of the operator system tells us anything new about the graph?

Lovász "magic" number

In 1979, László Lovász published a paper where he defines a number that only depended on G, usually denoted by $\vartheta(G)$, with some interesting properties,

$$\frac{\alpha(\overline{G})}{\mathsf{NP}-\mathsf{Hard}} \leq \frac{\vartheta(\overline{G})}{\mathsf{SDP}} \leq \frac{\chi(G)}{\mathsf{NP}-\mathsf{Hard}}$$

SDP: Semidefinite Program. These are solvable in polynomial time to within an additive error $\epsilon > 0$.

$$\vartheta(G \boxtimes H) = \vartheta(G) \cdot \vartheta(H)$$

(This product satisfies $S_{G\boxtimes H} = S_G \otimes S_H$)

Operator Systems?

It turns out that the two canonical quotient norms you can define on a operator system behave just like the Lovász theta function.

Graph Parameters via Quotient Norms

Quotient Norms

Given an operator system S and a kernel $\mathcal{J} \subseteq S$; that is, a kernel of some unital completely positive map $\phi : S \to \mathcal{B}(H)$ for some Hilbert space H, there is a way of defining two different quotient structures on S/\mathcal{J} .

- Operator/norm space quotient
- Operator system quotient

From these two structures, we can define two norms for any $X \in S$, which we will denote by $||X + \mathcal{J}||_{osp}$ and $||X + \mathcal{J}||_{osy}$.

Generalized Lovász Function

If we define,

$$\vartheta(\mathcal{J}) = \sup\{\|1 + a\| : a \in \mathcal{J}, 1 + a \in S^+\}$$

Theorem

$$||X + \mathcal{J}||_{osy} \leq ||X + \mathcal{J}||_{osp} \leq artheta(\mathcal{J}) \cdot ||X + \mathcal{J}||_{osy}$$

Carlos Ortiz (University of Houston)

Graphs and Operator Systems

January 10, 2015 16 / 24

Generalized Lovász Function

Theorem

Let G be a graph on k vertices. Then S_G^{\perp} is a kernel in M_k . In addition, $\vartheta(S_G^{\perp}) = \vartheta(G)$

Notice that this parameter only depends on the kernel. This means that...

Two New Families of Parameters

...we can define the following two families of parameters,

$$\sigma(G, X) := ||X + S_G^{\perp}||_{osy}$$

 $d_{\infty}(G, X) := ||X + S_G^{\perp}||_{osp}$

Result

Theorem

For $X \in M_n$ and $Y \in M_m$,

• $d_{\infty}(G \boxtimes H, X \otimes Y) = d_{\infty}(G, X) \cdot d_{\infty}(H, Y)$

•
$$\sigma(G \boxtimes H, X \otimes Y) = \sigma(G, X) \cdot \sigma(H, Y)$$

Theorem

For $X \in M_n(\mathbb{R})$,

- $d_{\infty}(G, X)$ has an SDP representation satisfying strong duality.
- $\sigma(G, X)$ has an SDP representation satisfying strong duality.

$d_{\infty}(G, I + A_G)$ vs. $\vartheta(\overline{G})$

Recall that,

hence,

$$d_{\infty}(G, I + A_G) = \min\{||(I + A_G) + K|| : K \in S_G^{\perp}\}$$
$$\vartheta(\overline{G}) = \min\{\lambda_1([I + A_G] + K) : K \in S_G^{\perp}\}$$

$$\vartheta(\overline{G}) \leq d_{\infty}(G, I + A_G)$$

Question Is $\vartheta(\overline{G}) = d_{\infty}(G, I + A_G)$? No!

A new condition on ${\it G}$

Theorem

If
$$\vartheta(\overline{G}) = d_{\infty}(G, I + A_G)$$
, then $\frac{\chi(G)}{||P_G||} \leq \vartheta(\overline{G}) \leq \chi(G)$

Carlos Ortiz (University of Houston)

Open Problems

- Find necessary and sufficient conditions such that $d_{\infty}(G, I + A_G) = \vartheta(\overline{G}).$
- Does $||X + S_G^{\perp}||_{osp/osy}$ tell us anything else about G?

23 / 24

Our Paper

Lovász Theta Type Norms and Operator Systems, preprint, arXiv: 1412.7101

Thanks!

Carlos Ortiz (University of Houston)

Graphs and Operator Systems

January 10, 2015 24 / 24