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Given graphs G = (V(G), E(G)) and H = (V(H), E(H)), a graph
homomorphism is a mapping f : V(G) — V/(H) such that if

(v,w) € E(G) = (f(v),f(w)) € E(H)

When a graph homomorphism from G to H exists we write G — H.
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Suppose two non-communicating players, Alice and Bob, each
receives a vertex from G and each must produce a vertex from H.



Graph Homomorphism (Non-Local) Game

Suppose two non-communicating players, Alice and Bob, each
receives a vertex from G and each must produce a vertex from H.

The “rules” of the game are given by a function
A: V(G) x V(G) x V(H) x V(H) — {0,1}
such that,

* Mv,v,x,¥y)=0,Vv e V(G),Vx £y
* Mv,w,x,y) =0,V(v,w) € E(G), ¥(x,y) ¢ E(H)
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A strategy for such a game is a conditional probability density p
where p(x, y|v, w) represents the probability that if Alice receives
vertex v and Bob receives vertex w, then they produce vertices x and
y, respectively.
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A strategy for such a game is a conditional probability density p
where p(x, y|v, w) represents the probability that if Alice receives
vertex v and Bob receives vertex w, then they produce vertices x and
y, respectively.

Such a p is a winning strategy provided:

AMv,w,x,y) =0 = p(x,y|v,w) =0.



Graph Homomorphism

Example
f'
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3 - Kz
3—1 1 — 2
2 = 451
N 552
6 — 2

1 iff(v)=x,f(w)=y

Strategy: p(x,y|lv,w) =
9y: p(x,| ) {0 otherwise
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Quantum Strategy

A density p is called a quantum strategy if it arises as follows:

+ For each v € V(G), Alice has sets of projections
{Fv,x}er(H) C H, such that Zx Fv7x =/

+ For each w € V/(G), Bob has sets of projections
{Gw,y}er(H) C Hp such that Zy Gy =

+ They share a state ¢ € H, @ Hp.

* p(X7y|V7 W) = <Fv,>< & Gw7ywaw>
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Quantum Commuting Strategy

A density p is called a quantum commuting strategy if:

* Foreach v € V(G), Alice has sets of projections
{Fv,x}er(H) C H such that ZX Ry = /.

* For each w € V(G), Bob has sets of projections
{Gw,y}er(H) CH such that Zy Gw,y = 1.

° Fv,XGW,y - GW.yF\/,X: VV,, w, X,y
+ They share a state ¢ € .

* p(X7}/|V, W) = <Fv,xGW,y¢a¢>
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When “|V(G)| = nand |V(H)| = m", we let:

* Cioc(n, m) denote the convex hull of strategies that come from
“graph homomorphisms”.
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* Cqc(n, m) denote the set of quantum commuting strategies.
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When “|V(G)| = nand |V(H)| = m", we let:
* Cioc(n, m) denote the convex hull of strategies that come from
“graph homomorphisms”.
*+ C4(n, m) denote the set of quantum strategies.
* Cqc(n, m) denote the set of quantum commuting strategies.

Here why these objects are interesting:

* Cioc(n, m) C C4(n, m) C Cyc(n, m)
* Tsirelson conjecture (1993, 2006): Is Cq(n, m) = Cgc(n, m) ¥n,m?
+ Ozawa (2012): Connes’ embedding conjecture (1976) is true iff

Cq(n, m) = Cyqc(n, m), Vn,m
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For t € {loc, q, qc}, we write G 5 H provided that there exist a
winning strategy p(x, y|v, w) € Ci(n, m) for the homomorphism
game. We call these quantum graph homomorphisms.
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Quantum Graph Homomorphisms

For t € {loc, q, qc}, we write G 5 H provided that there exist a
winning strategy p(x, y|v, w) € Ci(n, m) for the homomorphism
game. We call these quantum graph homomorphisms.

Theorem (O-Paulsen)

Let G and H be graphs.

cG6—H—=G6Y%H—= G5 H
- G5 Hand H - K implies G 5 K
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phisms
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{E,x : v € V(G),x € V(H)} on some Hilbert space H satisfying:
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C*-Homomorphisms

Given graphs G and H, we write G €} Hif we can find projections
{E,x : v € V(G),x € V(H)} on some Hilbert space H satisfying:

* E,xE,, =0, Vx#y
0 By =y
* If (v,w) € E(G)and (x,y) ¢ E(H) = E,«xEw, =0

If G S H exists, we let A(G, H) denote the universal unital C*-algebra
generated by {E, , : v € V(G),x € V(H)}.

Theorem (O-Paulsen)

G—H=—G6"%H—=G6C3H—GC%H— ¢S H
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Theorem (0O-Paulsen)

Let G and H be graphs and let m be fix.

* G- H < A(G, H) has a 1-dimensional representation
A G— K, < A(G, K,) has a T-dimensional rep.
- NP-Complete

* G5 H < (G, H) has a finite dimensional representation
A G2 K, < A(G, K,) has a finite dimensional dimensional rep.
- NP-Hard (Ji, 2013)
* G5 H «— A(G,H) has a trace

A G5B K, < A(G,K,)has a trace
- There exist an SDP (PSSTW, 2014)



Reference —

On ArXiv:
C. Ortiz, V. I. Paulsen, Quantum graph homomorphisms via operator
systems

Other topics:

+ Quantum chromatic numbers

+ Quantum core of a graph

Thanks!
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