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Graph Homomorphism Game



Graph Homomorphism

Given graphs G = (V (G),E (G)) and H = (V (H),E (H)), a graph
homomorphism is a mapping f : V (G) → V (H) such that if

(v ,w) ∈ E (G) =⇒ (f (v), f (w)) ∈ E (H)

When a graph homomorphism from G to H exists we write G → H .
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Graph Homomorphism (Non-Local) Game

Suppose two non-communicating players, Alice and Bob, each
receives a vertex from G and each must produce a vertex from H .

The “rules” of the game are given by a function

λ : V (G)× V (G)× V (H)× V (H) → {0,1}

such that,

• λ(v , v , x , y) = 0, ∀v ∈ V (G), ∀x ̸= y
• λ(v ,w , x , y) = 0, ∀(v ,w) ∈ E (G), ∀(x , y) /∈ E (H)
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Graph Homomorphism Game

Alice Bob

Alice Bob

Referee

Strategy

v w

↓

Alice λ(v ,w , x , y) = 0,1? Bob

Referee
x yv,w x,y
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Winning Strategies

A strategy for such a game is a conditional probability density p
where p(x , y |v ,w) represents the probability that if Alice receives
vertex v and Bob receives vertex w , then they produce vertices x and
y , respectively.

Such a p is a winning strategy provided:

λ(v ,w , x , y) = 0 =⇒ p(x , y |v ,w) = 0.
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Graph Homomorphism

Example

K4,2

1

2

3

4

5

6

f

1 → 1

2 → 1

3 → 1

4 → 1

5 → 2

6 → 2

K2

1 2

Strategy: p(x , y |v ,w) =

{
1 if f (v) = x , f (w) = y
0 otherwise
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Quantum Strategies



Quantum Strategy

A density p is called a quantum strategy if it arises as follows:

• For each v ∈ V (G), Alice has sets of projections
{Fv ,x}x∈V (H) ⊂ HA such that

∑
x Fv ,x = I .

• For each w ∈ V (G), Bob has sets of projections
{Gw ,y}y∈V (H) ⊂ HB such that

∑
y Gw ,y = I .

• They share a state ψ ∈ HA ⊗HB .

• p(x , y |v ,w) = ⟨Fv ,x ⊗ Gw ,yψ,ψ⟩
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Quantum Commuting Strategy

A density p is called a quantum commuting strategy if:

• For each v ∈ V (G), Alice has sets of projections
{Fv ,x}x∈V (H) ⊂ H such that

∑
x Fv ,x = I .

• For each w ∈ V (G), Bob has sets of projections
{Gw ,y}y∈V (H) ⊂ H such that

∑
y Gw ,y = I .

• Fv ,x Gw ,y = Gw ,y Fv ,x , ∀v ,w , x , y

• They share a state ψ ∈ H.

• p(x , y |v ,w) = ⟨Fv ,x Gw ,yψ,ψ⟩
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Sets of Correlations

When “|V (G)| = n and |V (H)| = m”, we let:

• Cloc(n,m) denote the convex hull of strategies that come from
“graph homomorphisms”.

• Cq(n,m) denote the set of quantum strategies.

• Cqc(n,m) denote the set of quantum commuting strategies.

Here why these objects are interesting:

• Cloc(n,m) ⊆ Cq(n,m) ⊆ Cqc(n,m)

• Tsirelson conjecture (1993, 2006): Is Cq(n,m) = Cqc(n,m) ∀n,m ?

• Ozawa (2012): Connes’ embedding conjecture (1976) is true iff
Cq(n,m) = Cqc(n,m), ∀n,m
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Quantum Graph Homomorphisms



Quantum Graph Homomorphisms

For t ∈ {loc , q, qc}, we write G t→ H provided that there exist a
winning strategy p(x , y |v ,w) ∈ Ct(n,m) for the homomorphism
game. We call these quantum graph homomorphisms.

Theorem (O-Paulsen)

Let G and H be graphs.

• G −→ H =⇒ G q−→ H =⇒ G qc−→ H
• G t→ H and H t→ K implies G t→ K
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C*-algebras and Graph Homomor-
phisms



C*-Homomorphisms

Given graphs G and H , we write G C∗

→ H if we can find projections
{Ev ,x : v ∈ V (G), x ∈ V (H)} on some Hilbert spaceH satisfying:

• Ev ,x Ev ,y = 0, ∀x ̸= y

•
∑

x Ev ,x = I, ∀v
• If (v ,w) ∈ E (G) and (x , y) /∈ E (H) =⇒ Ev ,x Ew ,y = 0

If G C∗

→ H exists, we let A(G ,H) denote the universal unital C*-algebra
generated by {Ev ,x : v ∈ V (G), x ∈ V (H)}.

Theorem (O-Paulsen)

G −→ H =⇒ G q−→ H =⇒ G qa−→ H =⇒ G qc−→ H =⇒ G C∗

−→ H
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C*-Homomorphisms: Results

Theorem (O-Paulsen)

Let G and H be graphs and let m be fix.

• G → H ⇐⇒ A(G ,H) has a 1-dimensional representation

▲ G → Km ⇐⇒ A(G ,Km) has a 1-dimensional rep.
– NP-Complete

• G q→ H ⇐⇒ A(G ,H) has a finite dimensional representation
▲ G q→ Km ⇐⇒ A(G ,Km) has a finite dimensional dimensional rep.

– NP-Hard (Ji, 2013)

• G qc→ H ⇐⇒ A(G ,H) has a trace
▲ G qc→ Km ⇐⇒ A(G ,Km) has a trace

- There exist an SDP (PSSTW, 2014)
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systems

Other topics:

• Quantum chromatic numbers

• Quantum core of a graph

Thanks!
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