

Classification of Rank 5 Premodular Categories

Carlos M. Ortiz Marrero Pacific Northwest National Laboratory

Joint work with Paul Bruillard

Joint Mathematics Meetings January 5, 2017

PNNL-SA-121757

- 1. Motivation
- 2. Classification
- 3. Categories
- 4. Results

Motivation

Definition [Freedman, Kitaev, Larsen, Wang '03]

Quantum Computation is any computational model based upon the theoretical ability to manufacture, manipulate, and measure quantum states

Definition [Freedman, Kitaev, Larsen, Wang '03]

Topological Quantum Computation is any computational model based upon the theoretical ability to manufacture, manipulate, and measure quantum states using topological phases of matter.

Definition [Nayak, et al '08]

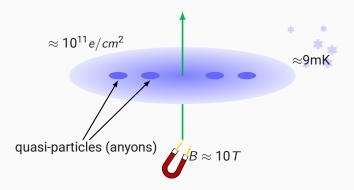
A topological phase of a matter (TPM) is a physical system such that its low-energy effective field theory^{*} is described by a TQFT.

Definition [Witten, et al '88]

A topological quantum field theory (TQFT) is quantum mechanical model where "amplitudes only depend on the topology of the process"[†].

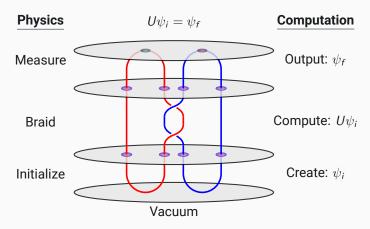
*...system is away from any boundary and has low energy and temperature. [†]Local perturbations will not change the state of your system.

Example: Two-Dimensional Electron Gas



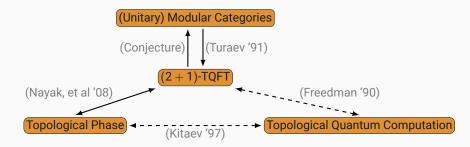
- These things exist! (e.g. *GaAs*, *α*-*RuCl*₃, *YbMgGaO*₄)
- There is theoretical (and some experimental) evidence that you can perform quantum computation with some of these phases.
- · Nobel prizes: experimental (1985, 1998) and theoretical (2016).

Computational Model



- · Performing gate operations = Braiding particles
- Computation is topologically protected from decoherence.

The appropriate mathematical structure is a modular category.



Morally, a classification of modular categories gives you a classification of topological phases.

Classification

Theorem [Bruillard, Ng, Rowell, Wang '13]

There are finitely many modular categories of a given rank^{\ddagger} r.

Complete classification up to rank 5.

Conjecture

There are finitely many premodular[§] categories of a given rank r.

• Complete classification up to rank 4 [Bruillard].

[‡]Number of different particles in your theory.

 $\ensuremath{\$}\xspace$...these are thought to be useful for (3+1) TQFTs.

Theorem [Bruillard, Ng, Rowell, Wang '13]

There are finitely many modular categories of a given rank^{\ddagger} r.

Complete classification up to rank 5.

Conjecture

There are finitely many premodular[§] categories of a given rank r.

• Complete classification up to rank $\frac{1}{4}$ 5 [Bruillard, O].

[‡]Number of different particles in your theory.

 $\ensuremath{\$}\xspace$...these are thought to be useful for (3+1) TQFTs.

Problems

- No general classification technique.
- Requires a lot of result from various areas of math on a case-by-case basis.
- In order to understand modular categories, you need to understand premodular categories, and vice versa.

Categories

$\operatorname{Rep}(G)$

Basic properties:

- $(\operatorname{Rep}(G), \oplus, \otimes, *)$
- + $\operatorname{Hom}^{\operatorname{G}}(\rho,\varphi)$ is a finite dimensional vector space
- $|Irr(G)| < \infty$
- $\phi = \bigoplus_k \alpha_k \psi_k$, $\psi_k \in Irr(G)$

- Abelian Monodial Category ($\mathcal{C},\oplus,\otimes)$
- \mathbb{C} -linear: Hom(X, Y) is a finite dimensional vector space
- Finite rank: finite number of simple classes $\{X_0 = 1, X_1, ..., X_n\}$
- Semisimple: $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X*
- $c_{X,Y}: X \otimes Y \cong Y \otimes X$
- Canonical notion of *Tr*_C

- Abelian Monodial Category $(\mathcal{C},\oplus,\otimes)$
- \mathbb{C} -linear: Hom(X, Y) is a finite dimensional vector space
- Finite rank: finite number of simple classes $\{X_0 = 1, X_1, ..., X_n\}$
- Semisimple: $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X*
- $c_{X,Y}: X \otimes Y \cong Y \otimes X$
- Canonical notion of *Tr*_C

- Abelian Monodial Category ($\mathcal{C},\oplus,\otimes$)
- \mathbb{C} -linear: Hom(X, Y) is a finite dimensional vector space
- Finite rank: finite number of simple classes $\{X_0 = 1, X_1, ..., X_n\}$
- Semisimple: $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X*
- $c_{X,Y}: X \otimes Y \cong Y \otimes X$
- Canonical notion of *Tr_C*

- Abelian Monodial Category ($\mathcal{C},\oplus,\otimes$)
- \mathbb{C} -linear: Hom(X, Y) is a finite dimensional vector space
- Finite rank: finite number of simple classes $\{X_0 = 1, X_1, ..., X_n\}$
- Semisimple: $X \cong \bigoplus_k \mu_k X_k$
- Dual object: X*
- $c_{X,Y}: X \otimes Y \cong Y \otimes X$
- Canonical notion of *Tr*_C

These set of axioms give rise to data that is an invariant for categories,

- $S := (Tr_{\mathcal{C}}(c_{X,Y^*}c_{Y^*,X}))$
- $\theta_X :=$ root of unity [Vafa '88]

Definition

If C is premodular and $Det(S) \neq 0$, we say C is a modular category.

We can think of the theory of fusion categories as an extension of representation theory:

Theorem [Deligne, Milne '82]

 $\operatorname{Rep}(G)$, regarded as a fusion category, uniquely determines the group G up to isomorphism.

We can think of the theory of fusion categories as an extension of representation theory:

Theorem [Deligne, Milne '82]

 $\operatorname{Rep}(G)$, regarded as a symmetric fusion category, uniquely determines the group G up to isomorphism.

• Rank(S) = 1

We can think of the theory of fusion categories as an extension of representation theory:

Theorem [Deligne, Milne '82]

 $\operatorname{Rep}(G)$, regarded as a symmetric fusion category, uniquely determines the group G up to isomorphism.

• Rank(S) = 1

Remark

You get modular categories from von Neumann Algebras, vertex operator algebras, Hopf algebras, and Quantum Groups.

Results

Theorem

If $\mathcal C$ is a rank 5 premodular category,[¶]

- C is symmetric and is given by Rep(G, z) where G is Z₅, D₈, Q₈, D₁₄, Z₅ ⋊ Z₄, Z₇ ⋊ Z₃, S₄, or 𝔄₅, and z is a central element of order 2.
- C is properly premodular and Grothendieck equivalent to:
 - $PSU(2)_8$ with $C' = \operatorname{Rep}(\mathbb{Z}_2)$
 - $\operatorname{Rep}(D_8)$ with $\mathcal{C}' = \operatorname{Rep}(\mathbb{Z}_2)$
 - $\operatorname{Rep}(D_{14})$ with $\mathcal{C}' = \operatorname{Rep}(\mathbb{Z}_2)$
 - $\operatorname{Rep}(\mathfrak{S}_4)$ with $\mathcal{C}' = \operatorname{Rep}(\mathfrak{S}_3)$
- C is modular and it is Grothendieck equivalent to SU(2)₄, SU(2)₉/ℤ₂, SU(5)₁, or SU(3)₄/ℤ₃ [BNRW '15].

Moreover, we found the categorical data for each case.

[¶]... well ... technically, pseudo-unitary premodular...

Suppose \mathcal{C} is a rank 5 premodular category...

- 1. Consider the subcategory, $C' := \{Y | c_{X,Y}c_{Y,X} = id_{X\otimes Y}, X \in C\}$. Since C' is symmetric, it looks like $\operatorname{Rep}(G)$ [Deligne '02].
- Relate C to a modular category using a construction called de-equivariantization [Bruguières '00].
- 3. Exploit the structure of the modular category to deduce information about C [Burciu, Natale '13].
- 4. Ad-hoc methods...

On ArXiv: P. Bruillard, C. Ortiz, *Rank 5 premodular categories*

Thanks!