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Introduction Dual-Phase Optimization
Non-local games explore the boundaries between classical 

physics, quantum theory, and other non-signaling theories1 2. Broad 

classes of games with a probable quantum advantage have been 

revealed3. However, constructing optimal quantum strategies for 

non-local games remains a challenge.

• Custom variational algorithm for computing quantum strategies

• ADAPT-VQE5 for state preparation creates compact circuits for NISQ hardware.

Quantum strategies for non-local games leverage quantum 

entanglement as a resource. Each game proceeds as follows

Non-Local Games

Strategy
Players devise joint 
strategy from rules λ
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Separation
They separate, taking
entangled state 𝜌
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Measurement
Measure 𝜌 independently 
based on 𝑞 from referee
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𝑎𝐴 𝑎𝐵

Evaluation
Referee evaluates the 
answers with λ 
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The quantum chromatic game4 is derived from the graph 

coloring problem. Players must properly color a vertex or an edge.

Quantum Chromatic Game

G14 Graph4

Classical 𝜒 𝐺 = 5
Quantum 𝜒𝑞 𝐺 = 4

Questions: 88 
Answers: 4 (𝜒𝑞)

Vertex 𝒗
Player colors must match

𝑐𝐴 = 𝑐𝐵

Edge 𝒆 = (𝒗𝑨, 𝒗𝑩)
Player colors must differ

𝑐𝐴 ≠ 𝑐𝐵
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† 𝐼 − 𝑃𝑐𝑐 𝑈𝑒

Tr 𝜌𝐻 = −𝑉(𝐺)

Tr 𝜌𝑃𝑐𝑐 = 𝑝 𝑐𝐴 = 𝑐𝐵

𝑈𝑣 and 𝑈𝑒 are the measurement layers. A perfect (𝑉 𝐺 = 1) strategy 

is known to exist4 with constraints on the measurements
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State Preparation
Use VQE to prepare 𝜌(𝜃) 
for 𝐻(𝜙)

1 Tune Measurements
Perform grad. descent on 
parameters 𝜙

2

Results
• A perfect quantum G14 strategy was created by 500 randomized DPO trials (classical).

• The strategy was executed on 11 IBM quantum devices, 88 circuits per device (quantum).

• We observed the strategy has properties desirable for benchmarking and self-testing.
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Fig. 1  Win rate by question on Aer 
Simulator and IBM Hanoi devices 
(coupling map shown).

Fig. 3  Win rate of strategy classically 
simulated on Hanoi coupling map, with Pauli 
noise added to CX gates with probability 𝑝𝑒𝑟𝑟.

• Vertex questions are sensitive to noise 
(benchmarking).

• Edge questions prove a device uses 
quantum resources if >97% (self-
testing).

The value of the game is

𝑉 𝐺 = 

𝑞𝑎

𝜆 𝑎 𝑞 𝑝 𝑎 𝑞 𝑝(𝑞) .

For a quantum strategy,
𝑝 𝑎 𝑞 = Tr 𝜌ℳ𝑎|𝑞

ℳ𝑎|𝑞 =  ⊗𝑖 ℳ𝑎𝑖|𝑞𝑖
(non-signaling)

Fig. 2  Vertex-edge win rate on each 
quantum device, colored by the number of 
available physical qubits. The circuit was 
executed on 4 physical qubits.
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