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Scientific Machine Learning



Era of Machine Learning: Image Recognition

Goal: Develop an algorithm to detect 1000 different classes of objects.
Human error is around 5%.

ImageNet Competition ILSVRC Challenge
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Era of Machine Learning: Object Detectors

You Only Look Once: https://pjreddie.com/darknet/yolo/
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Era of Machine Learning: Reinforcement Learning

deepmind.com
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History

geometricdeeplearning.com
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Some issues: Big Data and Complex Models

https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab
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Era of Machine Learning... for Science!?

“Despite deep learning’s successes,
however, important critiques have
highlighted key challenges it faces
in...reasoning about structured data,
transferring learning beyond the
training conditions, and learning
from small amounts of experience.”

“In general, a tension exist between
the need for increased complexity of
machine learning models to improve
results and the need for users to
interpret the models and derive new
insights and conclusions.”

What should machine learning look like in science?
There are a lot of mathematical challenges that accompany this question.
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Scientific Machine Learning: Applied Math + ML

Machine Learning requirements:
• Data:

Massive number of samples
that represent your problem.

• Compute power:
Special-purpose hardware to
perform parallel computation.

• High-Capacity Models:
Dense set of functions in the
function space of your problem.

Scientific requirements:
• Domian-Aware:

Leveraging and respecting
scientific domain knowledge.

• Interpretable:
Explainable and understandable
results.

• Robust:
Stable, well-posed, and reliable
formulations.
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State Estimation of Porous
Media



Hanford Site

google: hanford site nuclear waste doe
https://ecology.wa.gov/Waste-Toxics/Nuclear-waste/Hanford-cleanup
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Problem Formulation

Predict the Hydraulic Conductivity and Pressure:

given a small number of measurements.
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Diffusion Equation

These two quantities are related by the following differential equation,

∇ · (K (x)∇u(x)) = 0, x ≡ (x1, x2)
T ∈ (0, 1)× (0, 1)

subject to the Dirichlet boundary conditions

u(x) = 1, x2 = 0 and u(x) = 0, x2 = 1

and the Neumann boundary conditions

∂u(x)
∂x1

= 0 x1 ∈ {0, 1}.
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Physics Informed Neural Networks

Idea: Utilize the class of Deep Neural Networks to both fit the data and
solve the PDE during training.
Formulation: Recast the problem of solving a general nonlinear partial
differential equation (PDE) as a supervised learning problem with the
PDE as a constraint and optimize over the weights of the neural network.
Solve: Approximate the solution by solving the lagrangian relaxation.

I. Lagaris et al. “Artificial neural networks for solving ordinary and partial differential equations” (1998)
M. Rassi et al. “Physics-informed Deep neural networks: A deep learning framework for solving forward and inverse problems” (2019)
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Deep Learning Approach

Define the following deep neural networks:

• K̂ (x; γ) = NNK (x; γ)
• û(x; θ) = NNu(x; θ)

together with the following two auxiliary functions,

• f (x; γ, θ) = ∇ · [NNK (x; γ)∇NNu(x; θ)] = NNf (x; θ, γ)
• fN(x; θ) = ∂NNu(x; θ)/∂x2 = NNN(x; θ)
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Loss Function

Next define the following loss function:

L(θ, γ) = 1
NK

NK∑
i=1

[
K̂ (xK

i ; γ)− K∗
i

]2
+

1
Nu

Nu∑
i=1

[û(xu
i ; θ)− u∗

i ]
2

+
1

ND

ND∑
i=1

[
û(xD

i ; θ)− g∗
i
]2

+
1

NN

NN∑
i=1

fN(xN
i ; γ, θ)

2

+
1

Nc

Nc∑
i=1

f (xc
i ; γ, θ)

2.

for some know location observations {xK
i }

NK
i=1 and {xu

i }
Nu
i=1 and

collocation points {xD
i }

ND
i=1 and {xN

i }
NN
i=1.
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Training

Solve:
(θ, γ) = argmin

θ,γ
L(θ, γ)

using L-BFGS-B and some weight initialization scheme.
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3-layered Network, 32x32 grid, NK = 250, Nu = 100, Nc = 1024
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Relative Error

εu =
||u(x)− û(x)||2L2

||u(x)||2L2

, εK =
||K (x)− K̂ (x)||2L2

||K (x)||2L2
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Uncertainty in Weight Initialization; Nc = 1024

We initialized all our networks using Xavier’s normal initialization∗

scheme.

∗Glorot, Xavier and Yoshua Bengio. “Understanding the difficulty of training deep feedforward
neural networks” (2010)
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Uncertainty in Collocation Points; NK = Nu = 20
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Results
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Bonus: Forcasting the fate of Radioactive Iodine

We examine a subset of water radiolysis and
subsequent iodine reactions to show
proof-of-concept of the ability to forecast
chemical evolutions using Recurrent Neural
Networks i.e. learn the flow map of the
underlying ODE.

Key: Neural Networks can capture
dynamics of large dimensional data
e.g. multiple chemical species.
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Open Problems and Reference

• Theoretical Guarantees!?
• Better uncertainty quantification.
• Connections to universal approximation theorem.

Alexandre Tartakovsky, Carlos Ortiz Marrero, Paris Perdikaris, Guzel
Tartakovsky, David Barajas-Solano, Learning Parameters and
Constitutive Relationships with Physics Informed Deep Neural
Networks (2018)
Jenna A. Bilbrey, Carlos Ortiz Marrero, Michel Sassi, Neil Henson,
Malachi Schram, Tracking the chemical evolution of iodine species
via recurrent neural networks (2019)
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Scientific Machine Learning

Goal: Facilitate scientific discovery
via automation.

Key ingredients for Scientific
Machine Learning:

1. Proper mathematical
formulation

2. Incorporate prior/domain
knowledge

3. Acquire data

22


	Scientific Machine Learning
	State Estimation of Porous Media

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


